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BACKGROUND: Few birth cohorts in South America evaluate the joint effect of minerals and toxic metals on neonatal health. In Madre de Dios, Peru,
mercury exposure is prevalent owing to artisanal gold mining, yet its effect on neonatal health is unknown.
OBJECTIVES:We aimed to determine whether toxic metals are associated with lower birth weight and shorter gestational age independently of antena-
tal care and other maternal well-being factors.
METHODS: Data are from the COhorte de NAcimiento de MAdre de Dios (CONAMAD) birth cohort, which enrolled pregnant women in Madre de
Dios prior to their third trimester and obtained maternal and cord blood samples at birth. We use structural equation models (SEMs) to construct latent
variables for the maternal metals environment (ME) and the fetal environment (FE) using concentrations of calcium, iron, selenium, zinc, magnesium,
mercury, lead, and arsenic measured in maternal and cord blood, respectively. We then assessed the relationship between the latent variables ME and
FE, toxic metals, prenatal visits, hypertension, and their effect on gestational age and birth weight.
RESULTS: Among 198 mothers successfully enrolled and followed at birth, 29% had blood mercury levels that exceeded the U.S. Centers for Disease
Control and Prevention threshold of 5:8 lg=L and 2 mothers surpassed the former 5-lg=dL threshold for blood lead. The current threshold value is
3:5 lg=dL. Minerals and toxic metals loaded onto ME and FE latent variables. ME was associated with FE (b=0.24; 95% CI: 0.05, 0.45). FE was
associated with longer gestational age (b=2.31; 95% CI: −0:3, 4.51) and heavier birth weight. Mercury exposure was not directly associated with
health outcomes. A 1% increase in maternal blood lead shortened gestational age by 0.05 d (b=−0:75; 95% CI: −1:51, −0:13), which at the
5-lg=dL threshold resulted in a loss of 3.6 gestational days and 76:5 g in birth weight for newborns. Prenatal care visits were associated with
improved birth outcomes, with a doubling of visits from 6 to 12 associated with 5.5 more gestational days (95% CI: 1.6, 9.4) and 319 g of birth
weight (95% CI: 287.6, 350.7).
DISCUSSION: Maternal lead, even at low exposures, was associated with shorter gestation and lower birth weight. Studies that focus only on harmful
exposures or nutrition may mischaracterize the dynamic maternal ME and FE. SEMs provide a framework to evaluate these complex relationships
during pregnancy and reduce overcontrolling that can occur with linear regression. https://doi.org/10.1289/EHP10557

Introduction
The in utero and neonatal periods are critical windows of an indi-
vidual’s life, during which exposures to toxic, metals such as
lead (Pb), mercury (Hg), and cadmium (Cd), or a lack of minerals
[calcium (Ca), zinc (Zn), iron (Fe), magnesium (Mg)] may have
lifelong consequences.1,2 Many studies have evaluated newborn
health outcomes from nutritional or toxicological perspectives,
but few have evaluated both simultaneously,3 especially in devel-
oping countries.4–8 This is of special importance given that nutri-
tional status and toxic exposures are known to interact, causing
neonatal health to be dependent on both minerals and toxic met-
als. Birth cohorts in developed nations benefit from strong health

care systems and food security, often precluding the ability to
evaluate interactions of malnutrition and toxic metal exposure. A
lack of minerals is known to adversely affect fetal development:
low levels of Ca can lead to poor skeletal formation and arryth-
mias in newborns9; low levels of Fe during pregnancy increases
risk of preterm birth10,11; and low levels of Mg are associated
with small for gestational age and preterm labor.12 From a toxico-
logical perspective, maternal exposure to toxic metals during
pregnancy is associated with decreased birth weight5,13–17; lower
ponderal index; shorter gestational age; smaller head circumfer-
ence; lower appearance, pulse, grimace, activity, and respiration
(APGAR) score18; and a thinner placenta.5,19 Maternal Pb expo-
sure has also been found to shorten gestational age.20 Maternal
and fetal Hg exposure has been linked to decreased head circum-
ference21,22 and cognitive deficits in children.23,24

Assessment of exposures to toxic metals and minerals in epi-
demiological analyses on neonatal health is important because
they influence maternal absorption, cellular processes, and nutri-
ent transfer to the fetus.25–29 For example, Pb and Cd absorption
is increased when Fe levels are low. Adequate nutrition could
mitigate the harmful effects of toxic metals given that selenium
(Se) may sequester harmful free radicals from Hg exposure.30,31

Toxic metals also compete with minerals for binding sites
through molecular mimicry, disrupting cellular functions,30,32–34

and potentially impeding nutrient transfer to the fetus.30,33 Cd has
been shown to impede the transfer of Zn26,35 and Ca,35 and
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increasing levels of maternal Se has been suggested as a means to
lower Cd levels in cord blood.17 The potential for toxic metals to
interfere with nutrient transport to the fetus may have important
biological consequences that may be undetected when minerals
and toxic metals are analyzed separately. Not integrating mater-
nal nutrition in statistical analyses may incorrectly infer the
association between toxic metal exposures and neonatal health
because effect sizes may be greater in malnourished individuals
(or nonexistent in those who are well nourished). This may be of
special importance for nutritionally nonreplete populations.

Fetal risk of exposure to minerals and toxic metals exists ini-
tially with the maternal environment, or the exposures present
during gestation. Minerals, metals, and other nutrients are trans-
ferred to the fetus in this environment, representing a physiologi-
cal hierarchy that is commonly not accounted for in statistical
analyses. Birth cohort studies predominantly use standard linear
regression to evaluate the direct relationship of either maternal or
cord blood measurements to neonatal health. The use of maternal
exposures as direct effects on neonatal health and the evaluation
of additional variables as effect modifiers does not account for
any modifications that may occur in the transfer from mother to
child,4–8,15,19,21,36–43 (Table S1). Although there is a direct
association between cord blood and neonatal health, policy and
health care recommendations are implemented at the maternal
level, requiring an understanding of how the maternal metal
environment relates to the fetal environment (FE) and neonatal
health. Structural equation models (SEMs) and factor analysis
approaches have been proposed to evaluate multivariate expo-
sures and end points44,45 because they can account for known
physiological processes and allow hypothesized structures to be
tested statistically. SEMs also permit dependent variables to be
evaluated jointly, which prevents overfitting. This issue arises
in models evaluating correlated (and endogenous) factors asso-
ciated with birth weight, such as gestational age, the inclusion
of which in linear models limits the amount of remaining var-
iance available to detect the true effects of other variables.46

SEMs also define unmeasurable (latent) variables that can be
constructed and evaluated with newborn health outcomes, such
as the maternal metals environment (ME) and the FE. Latent
variables can provide a better model fit than linear models.47 In
this study, we used SEMs to test a novel conceptual framework
for neonatal health that incorporates the transfer of minerals
and toxic metals from mother to child while jointly evaluating
gestational age and birth weight.

Few birth cohorts have been implemented in low- and middle-
income countries (LMICs). Data collection in LMICs is consider-
ably more difficult compared with similar studies in high-income
countries (HICs) for a number of reasons, including resource and
infrastructure constraints, building community trust, and local logis-
tical issues. We could not identify any previous birth cohorts that
have jointly evaluated nutrients and toxic metal exposures in South
America. This is especially important because results from previous
birth cohorts in HICs may not be translatable to the Amazon owing
to differences in disease burdens, environmental exposures, and
health care access.48 To our knowledge, this is the first birth cohort
in South America to evaluate how nutritional status and toxic metal
exposures may jointly influence neonatal health outcomes, which
are particularly relevant to LMICs currently undergoing nutritional
transitions to a Western diet.49,50 Specifically, we measured direct
and indirect effects of toxic metals and minerals to determine their
effect on birth weight and gestational age. In doing so, we contribute
valuable information in an understudied population on maternal
well-being, minerals, and toxic metal exposures. Data are from the
COhorte de NAcimiento de MAdre de Dios (CONAMAD) in
Madre deDios, Peru (Figure 1).51

Methods

Data Collection
Data were collected in 2017–2018 as part of the CONAMAD birth
cohort based in Madre de Dios, Peru, and was approved by the
institutional review board of Universidad Peruana Cayetano
Heredia, SIDISI 66471.51 The cohort is described in detail by Pan
et al.51 Madre de Dios is a hotspot of global biodiversity as well as
global Hg pollution owing to the rapid expansion of artisanal and
small-scale gold mining (ASGM) over the past two decades.
CONAMAD is one of the few birth cohorts conducted in Latin
America and the Caribbean that has collected prenatal exposure
data and the only birth cohort of which we are aware that is based
in an ASGM region. Briefly, 270 mothers were enrolled by health
professionals at health posts during a prenatal visit before their
third trimester. Enrollment sites were in four zones differentiated
by land use and presence of ASGM [Zone 1: ASGM region
(n=37), Zone 2: ASGM and agriculture (n=50), Zone 3: Puerto
Maldonado (n=121), Zone 4: agriculture (n=7)], with no statisti-
cally significant differences in birth weight, gestational age,
anemia, or hypertension by zone.51 Inclusion criteria includedmul-
tiparouswomenwith at least one other child from the same biologi-
cal father and a planned birth in Madre de Dios because the study
was originally designed to evaluate the potential epigenetic effects
from Hg exposure. Women were excluded if medically diagnosed
with type II diabetes prior to pregnancy, were a current smoker,
resided outside Madre de Dios for >2 wk during pregnancy or
were planning to give birth outside ofMadre deDios.

At enrollment, study nurses andmedical professionals adminis-
tered a survey on diet, supplements, and transcribed prenatal care
records of weight, height, hemoglobin, blood pressure, and prena-
tal complications. A maternal hair sample was also collected for
total Hg determination. At birth, study nurses and medical profes-
sionals administered a postnatal survey and collected venous
maternal and fetal cord blood samples. Birth weight (in kilograms),
gestational age (in weeks), APGAR score, and pathologies of con-
cern were transcribed from medical records onto the prenatal
survey.52 A HemoCue Hb 201+ was used for in situ hemoglobin
measurements at enrollment and at birth. A total of 215 mothers
were successfully followed up at birth. Of those, 1 gave birth to
twins, 1 had a stillbirth, and 13 were missing a blood sample and
were therefore excluded from the study. Complete data were
available for 200 mother–child dyads, consisting of maternal
and whole cord blood samples collected in trace element royal
blue–topped blood collection tubes. Both blood samples were
collected to better understand transplacental transfer of minerals
and toxic metals, many of which are bound to red blood cells.15
The number of prenatal visits was missing for 2 women, resulting in
198 mother–child pairs included in the analysis. Blood samples
were initially stored and shipped at −20�C to Duke University
(Durham, North Carolina), and subsequently stored at −80�C. All
samples were processed in the laboratory ofH.H.K.

Laboratory Analysis Blood
Cord and maternal blood samples were analyzed for Pb, Hg, Cd,
arsenic (As), Fe, Mg, Zn, sodium, Ca, and Se. The lower limits of
quantification and method detection limits are reported in Table
S2. All analytes were above detection level, except for Cd
(<0:5 lg=L) and As (<0:9 lg=L), which had 68% (N =135) and
70% (N =139) of samples below the limit of detection (LOD).
For samples with concentrations below the lower LOD, a value
of half of this limit was assigned to that sample.

For blood digestions, samples were thawed overnight at 4°C,
and digested on a hot block at 65°C. The digestions used ultra-trace
clean digestion tubes (Environmental Express) and consisted of
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heating 0:5 mL of blood with 1 mL of 70% nitric acid (HNO3;
Plasma Pure Plus, SCP Science) with 0:05 mL of 30% hydrochlo-
ric acid (HCl; Plasma Pure Plus, SCP Science) for 2 h. The samples
were cooled and 1 mL of 30% hydrogen peroxide (Plasma Pure
Plus, SCP Science) was added to the mixture and heated again for
1 h. After cooling, 10 lL of a 4-mg=Lgold ðAuÞ+2% HCl solu-
tion was spiked into the digestate to aid in Hg stability. Each
digestion batch consisted of 25 blood samples, including
two samples analyzed in triplicate. Furthermore, each batch of
25 blood digestions included three blank samples, a National
Institute of Standards and Technology (NIST) blood standard ref-
erence material (SRM) (levels 2–4), an aqueous standard [High
Purity Standards, CRM-TMDW-A + Spex Certiprep (Hg)], and
an International Atomic Energy Agency (IAEA) dry blood sam-
ple (IAEA-A-13). Analytes were background corrected by sub-
tracting the average of the three blanks. Recoveries for the SRMs
are listed in Table S3.

The blood digestates were analyzed by inductively coupled
plasma–mass spectrometry (ICP-MS; Agilent 7900). A summary
of the plasma conditions is given in Table S2. The samples were
diluted (10-fold) into an acid matrix [2% (vol/vol) HNO3 and
0.5% HCl (vol/vol)] consisting of 20 lg=L Au and 20 lg=L in-
ternal standards (45scandium, 89yttrium, 103rhodium, 115indium,
159terbium, 193iridium, and 209bismuth) to correct for instrumen-
tal drift or matrix effects. The analyses were performed in either

helium mode (kinetic energy discrimination) or hydrogen mode
(reaction mode for 78Se and 44Ca). The ICP-MS was optimized to
reduce oxide and doubly charged interferences to <3%. The
instrument was calibrated for Hg (Brooks Rand), Zn, Pb, Se, and
As (Spex Certiprep mix 2A), and Fe, Mg, and Ca (Spex Certiprep
custom mix), with the standard curves verified against second
source standards [High Purity Standards (CRM-TMDW-A) +
Spex Certiprep (Hg)]. Continuing calibration verification checks
were performed every 20 samples during a batch run.

Laboratory Analysis Hair
Maternal hair samples were collected at birth by health staff and
medical professionals. Methods for hair sample collection and
analysis followed Koenigsmark et al.53 Briefly, hair samples were
collected using stainless steel scissors from the occipital region of
the head as close to the root as possible. Three samples were col-
lected from each participant and were stored in Ziploc bags with a
desiccant. The 2 cm closest to the root were analyzed for total Hg
using a Direct Mercury Analyzer-80 (DMA), representing the last
2 months of exposure.54 Dilutions of certified 1 mg=L total Hg
standard (Brooks Applied Labs) were used to calibrate the instru-
ment. A certified reference material (CRM DB001; European
ReferenceMaterials) was processed to assess the DMA calibration
over the course of the hair analysis. The CRM recovery was 96%

Figure 1. CONAMAD Study Region, Madre de Dios, Peru. The capital of Madre de Dios, Puerto Maldonado, is labeled with a star and shown in the red inset
map in the upper right. Note: CONAMAD, COhorte de NAcimiento de MAdre de Dios.

Environmental Health Perspectives 097008-3 131(9) September 2023



(n=79). For a subset of samples (n=49), the CRM, IAEA-086,
was used and had a recovery of 92% (n=8).

Variables
Outcomes. The study outcomes were gestational age (in weeks)
and birth weight (in grams). Both were normally distributed.
Gestational age was determined by the Capurro somatic method.52

Birthweightwasmeasured at birth bymedical staff. Only singleton
births were included for analysis.

Predictors.Minerals (Zn,Mg, Ca, Se, Fe) and toxicmetals (Pb,
Hg, As, Cd) measured in maternal and cord blood were the tested
predictors of gestational age and birth weight. Analyte measure-
ments were normalized with a log10 transformation. Two latent
variables, maternal ME and FE, were constructed from measured
minerals and toxic metal concentrations in maternal and cord
blood, respectively. TheME and FE environments were created by
loading minerals and toxic metals measured in maternal and cord
blood, respectively. Loadings that had an absolute value of <0:30
were removed from themodel.

Covariates. Covariates include survey data consisting of
mother’s age, whether the mother took nutritional supplements dur-
ing pregnancy (yes/no), number of previous births, and socioeco-
nomic status (SES). Nutritional supplements included folic acid, Fe
tablets, and iron sulfate (FeSO4) taken for various durations and
doses prescribed by health officials. The variable “number of births”
had a nonnormal distribution (median= 2, range: 1–7) andwas eval-
uated as a binary variable categorized as 1–3 births (n=166) and≥4
births (n=16).We also evaluated SES, which was determined using
estimated household annual income from the partner’s occupation
and classified as below minimum wage [<12,000 Peruvian Nuevo
Soles (PNS)], low (10,200–14,000 PNS), and moderate (>14,000
PNS), with 1 PNS= USD $0.295 (November 2016). It is important
to note that Peru set the minimum wage in 2016 at 850 PNS/month
(or 10,200 PNS annually), indicating that incomes in Madre de Dios
were lowcomparedwith national standards.

At each prenatal care visit, mothers were screened for anemia
(using hemoglobin measurements), gestational hypertension, and
gestational diabetes by medical professionals. The mean number
of prenatal visits was 7 and ranged from 2 to 12 visits (Table 1).
Whether or not a mother developed gestational diabetes (yes/no),
hypertension (systolic blood pressure >140mmHg, yes/no), or
pathologies of concern (risk of abortion, previous cesarian deliv-
ery, urinary infection, bleeding, and hyperemesis gravidarum) was
transcribed from medical records. Hemoglobin measurements at
enrollment and at birth, as well as presentation of anemia during
pregnancy, were also assessed. Hemoglobin was measured using a
HemoCue Hb 201+, with anemia classification dependent on the
estimated gestational week.55 The number of prenatal care visits
was confirmedwith the clinical record. The data set did not include
maternal bodymass index prior to pregnancy. Total Hg inmaternal
hair at birth was also evaluated as a risk factor for neonatal health
by incorporating maternal hair Hg into the SEM. The potential for
outcomes to bemodified by newborn sexwas also assessed.

Statistical Analysis
Conceptual framework. Minerals and toxic metals are known to
interact at multiple physiological levels from absorption rates to
distribution within the body. To account for potential interactions
between minerals and toxic metals, we created latent variables
that represented the maternal ME and the FE. We then statisti-
cally evaluated how the ME was associated with the FE and their
associations with birth weight and gestational age while account-
ing for covariates (age, sex, hypertension, and number of prenatal
care visits; Figure 2).

Table 1. Characteristics of maternal and newborn health in the CONAMAD
birth cohort conducted inMadre de Dios, Peru, from 2017 to 2018 (n=198).

Overall (N =198)

Mother’s age (y)
Mean±SD 27:5± 4:16
Median (min, max) 27.0 (18.0, 35.0)

Hypertension [n (%)]
No 178 (93.7)
Yes 12 (6.3)
Missing 8

Diabetes status [n (%)]
No 196 (99.5)
Yes 1 (0.5)
Missing 1

Pathologies of concern [n (%)]
None 163 (90.6)
Previous cesarean section 3 (1.7)
Abortion risk 1 (0.6)
Hyperemesis gravidarum 1 (0.6)
Urinary tract infection 1 (0.6)
Placenta previa 1 (0.6)
Bleeding and pain 1 (0.6)
Unspecified 9 (5.0)
Missing 18

Socioeconomic status [n (%)]
Low 31 (17.2)
High 63 (35.0)
Moderate 86 (47.8)
Missing 18

Number of previous births
Mean±SD 1:95± 1:09
Median (min, max) 2.00 (1.00, 7.00)
Missing 16

Prenatal care visits
Mean±SD 7:25± 2:12
Median (min, max) 7.00 (2.00, 12.0)

Maternal hemoglobin at enrollment (g/dL)
Mean±SD 11:7± 1:25
Median (min, max) 11.6 (7.00, 15.7)
Missing 8

Maternal hemoglobin at birth (g/dL)
Mean±SD 11:4± 1:08
Median (min, max) 11.3 (8.70, 14.8)
Missing 32

Presented anemia during pregnancy [n (%)]
No 129 (80.1)
Yes 32 (19.9)
Missing 37

Trimester of anemia presentation [n (%)]a

Anemic first trimester 1 (0.6)
Anemic second trimester 1 (0.6)
Anemic at birth 30 (18.6)
Not anemic at first trimester 40 (24.8)
Not anemic at second trimester 64 (39.8)
Not anemic at birth 25 (15.5)
Missing 37

Newborn’s sex [n (%)]
Female 87 (43.9)
Male 111 (56.1)

Birth weight (g)
Mean±SD 3,540± 454
Median (min, max) 3,560 (1,650, 5,050)

Gestational age (wk)
Mean±SD 39:2± 1:22
Median (min, max) 39.0 (33.0, 42.0)

Preterm pregnancy [n (%)]b

No 191 (96.5)
Yes 7 (3.5)

Note: CDC, Centers for Disease Control and Prevention; CONAMAD, COhorte de
NAcimiento de MAdre de Dios; max, maximum; min, minimum; SD, standard
deviation.
aAnemia was determined by gestational age as described by the CDC.55
bPreterm was classified as a pregnancy <37 wk.
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Measurement model. To incorporate the transport of minerals
and toxic metals from the mother to the fetus, latent variables
reflecting the ME and the FE were created from maternal blood
at birth and cord blood, respectively. ME and FE comprised min-
erals and toxic metals that loaded onto the latent variable, using a
p<0:05. Preliminary models, which evaluated the loading of
maternal blood and cord blood onto their respective latent varia-
bles, without adjustments, demonstrated an association between
ME and FE (Table S4).

Model identification. SEMs were used to test the causal struc-
ture of the physiological hierarchy, with the ME indirectly affect-
ing gestational age and birth weight through the FE (Figure 2).
We then individually evaluated the direct effect of risk factors
(hypertension, diabetes, anemia, SES, and parity) and toxic met-
als on gestational age and birth weight; given that birth weight is
dependent on gestational age, we evaluated them jointly.

Age was evaluated continuously and as a binary variable, in
separate models, to compare the top and bottom 50th percentiles.
We found no nonlinear associations with a continuous maternal
age variable and used this for subsequent models (Table S5).
Maternal hemoglobin values at enrollment and at birth, as well as
presentation of anemia during pregnancy (yes/no) and maternal
hair Hg concentration at birth, were also evaluated. The direct
effect of the ME, toxic metals, and minerals on gestational age
and birth weight was also assessed. We used Pearson correlation

statistics to evaluate the correlations of toxic metals and minerals
within and between the maternal and cord blood.

Model estimates were quantified using maximum likelihood
and evaluated using chi squared (v2 > 0:05), Tucker-Lewis
Index (TLI > 0:95), root mean square error of approxima-
tion (RMSEA < 0:07) and standardized root mean residual
(SRMR < 0:08). Models that met these requirements were fur-
ther evaluated and compared using the Akaike information crite-
rion (AIC) and the Bayesian information criterion (BIC), with the
lowest values demonstrating the best fit model (Table 2).
Analysis was done in RStudio (version 1.4.1717). Model fitting
involved the selection of a base model that adjusted for common
risk factors (hypertension, sex, age, and number of prenatal vis-
its), and then the addition of Pb and Hg to the base model. Only
mother–child pairs with complete data were included in the anal-
ysis. Base model results with Pb or Hg were identical to the base
model, thus, only the final model results are shown here. A
threshold of 0.05 was used for statistical significance.

Results
The study analyzed 198 mother–child pairs of singleton births.
Most women presented no pathologies of concern (82%) and had
full-term pregnancies (96%). Only 6% ofwomen became hyperten-
sive (systolic blood pressure >140mmHg or diastolic >90mmHg)

Figure 2. Theoretical latent model with evaluated covariates. Note: anemia status (yes/no), measured hemoglobin values below recommended guidelines by
gestational week at enrollment and birth; As, arsenic; Ca, calcium; Fe, iron; Hg, mercury; hypertension, the development of gestational hypertension (systolic
blood pressure >140mmHg); Mg, magnesium; parity, number of prior births; Pb, lead; prenatal visits, number of prenatal care visits prior to birth; Se, sele-
nium; SES, socioeconomic status; Zn, zinc.

Table 2. Global fit measures of base and maternal Pb SEMs.

Model df v2 (p-value) CFI/TLI RMSEA (CI) SRMR AIC BIC

Base model 116 0.08 0.985/0.981 0.031 (0.000, 0.049) 0.074 −3,314:6 −3,166:6
Maternal Pb 116 0.06 0.984/0.980 0.032 (0.000, 0.050) 0.073 −3,311:6 −3,163:5

Note: AIC, Akaike information criterion; BIC, Bayesian information criterion; CFI/TLL, comparative fit index/Tucker-Lewis index; CI, confidence interval; df, degrees of freedom;
Pb, lead; RMSEA, root mean square error of approximation; SEMs, structural equation models; SRMR, standardized root mean squared residual.
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and 0.5%were diagnosed with diabetes during pregnancy.Women
had an average of 7.3 prenatal visits, 80% took some type of nutri-
tional supplement, and most were pregnant with their second child
(Table 2). Most women had moderate and higher household
incomes (43% and 32%, respectively). Less than a third (28.8%) of
mothers had blood Hg levels that surpassed the U.S. Centers for
Disease Control and Prevention (CDC) guidelines of 5:8 lg=L.56

Total Hg in maternal hair ranged from 0:2 lg=g to 8:4 lg=g, with
a mean of 1:9 lg=g. Two mothers surpassed the CDC’s former
5 lg=dL limit for total blood Pb (Table 3).57 Seven mothers sur-
passed the CDC’s current limit, passed on October 2021, for total
blood Pb of 3:5 lg=dL.

We found correlations (p<0:05) among toxic metals and min-
erals within maternal blood and cord blood, as well as between
maternal blood and cord blood (Figure 3; Figure S1). Overall, met-
als grouped by sample type (maternal or fetal), with the notable
exceptions of Hg, Pb, Cd, and Mg, which were not part of a larger
correlated group (Figure S1). Hg and Pb were not correlated with
othermetals.

Relationship of Variables with the Maternal ME
In maternal blood, Fe was positively correlated with Se, Zn, and
Mg. Ca was inversely correlated with Zn and Fe (Figure 3).
Levels of Ca, Se, Hg, and Pb were positively correlated between
maternal and fetal blood, with Pb and Hg having the strongest
correlations [0.90 and 0.80, respectively (Figure 3; Table S6)].

In establishing the ME, mineral concentrations had the great-
est influence on the ME (largest loading factors), with toxic met-
als having a lesser contribution. Fe, Zn, Pb, Hg, Mg, and Ca

contributed to the latent variable ME, with loading values of
1.25, 1.24, 1.22, 1, 0.46, and −0:30, respectively. ME values
ranged from −0:21 to 0.20. All toxic metals and minerals were
positively associated with ME, except for Ca. Cd did not load
onto ME.

Relationship of Variables with the FE
Within cord blood, Cd was correlated with Zn and Ca, and inver-
sely correlated with Fe and Se. Fe was correlated with Se and
inversely associated with Ca.

A different set of toxic metals and minerals was found to load
onto FE and comprised Hg, Fe, As, Se, Pb, and Mg, with loading
values of 1.0, 0.96, 0.93, 0.71, 0.53, and 0.36. FE values ranged
from −0:22 to 0.19. Cd and Ca did not load onto FE.

Relationship between Maternal ME, FE, and Neonatal
Outcomes
Gestational age. The latent variable ME was associated with FE
in both the base and final SEMs (Table S7 and Figure S2). After
adjusting for hypertension, age, sex, prenatal visits, and maternal
blood Pb, the FE had a positive effect on birth outcomes given
that it was associated with gestational age [b=2.28; 95% confi-
dence interval (CI): 0.02, 4.63], with an additional unit increase
in the FE lengthening gestational age by 2 wk. Hypertension was
associated with a shortened gestational age of 4 d (b=−0:60;
95% CI: −1:25, 0.04; Table 4, Figure 4). The number of prenatal
care visits was associated with longer gestation (b=0.13; 95%
CI: 0.05, 0.23), with each prenatal care visit adding almost an
extra day of gestation (Figures S3 and S4 and Table S8).

A 1% increase in maternal Pb was associated with a shorter
gestational age of 0.05 d [b=−0:74; 95% CI: −1:46, −0:16
(Table 4, Figure 4)], which at the 5-lg=dL threshold, resulted in
a loss of 3.6 gestational days (95% CI: 0.6, 7.4) and 76:5 g (95%
CI: 13.6, 139.4) birth weight for newborns. Compared with the
base model, the inclusion of maternal blood Pb level did not
modify the effect of hypertension status (Table 4), potentially
indicating independent mechanisms through which Pb and hyper-
tension affect gestational age. Mothers with hypertension and av-
erage blood Pb levels had a shorter gestational age of 5.3 days
(95% CI: 0.22, 11.05). Similar results were found even when
excluding women with outlying Pb exposure. According to the
standardized SEM solution, a 1-standard deviation (SD) increase
in the FE score has an equivalent and opposite effect to a 1-SD
increase in the log10 maternal Pb exposure, indicating that a posi-
tive increase in FE may counterbalance the negative association
of maternal Pb exposure on neonatal birth outcomes. For exam-
ple, mothers who had an FE score in the 75th percentile could
have 34% higher blood Pb levels before a negative loss in gesta-
tional days compared with mothers with an FE at the 25th percen-
tile (Figure 5, Table 4). Maternal hair Hg concentrations at birth
were not associated with birth outcomes (Table S9). Maternal he-
moglobin concentrations at enrollment and at birth and anemia
status during pregnancy were also not associated with birth out-
comes (Tables S10–S12).

Birth weight. Birth weight was associated with mother’s age
in years, (b=18.43; 95% CI: 5.99, 31.67), number of prenatal
visits (b=51.3; 95% CI: 20.78, 85.40), and newborn’s sex, with
females weighing 127 g less than males (b=−127:43; 95% CI:
−242:48, −12:84). For each additional year of age, a mother’s
child weighed an additional 18:4 g. Each prenatal visit was asso-
ciated with an increase of 51:3 g (95% CI: 20.78, 85.40), with a
doubling of visits from 6 to 12 associated with 5.5 more gesta-
tional d (95% CI: 2.1, 9.7) and 307 g of birth weight (95% CI:
124.68, 512.4). The updated World Health Organization (WHO)

Table 3.Minerals and toxic metals measured in maternal and cord blood at
birth for the CONAMAD birth cohort conducted in Madre de Dios, Peru,
from 2017 to 2018.

Cord blooda (N =198) Venous blooda (N =198) p-Valueb

Hg (lg=L)
GM±SD 6:0± 2:4 3:6± 2:6 0.001
95% CI 1.5, 25.6 0.79, 16.5 —
Pb (lg=dL)
GM±SD 1:1± 1:8 1:4± 1:7 0.006
95% CI 0.46, 2.88 0.67, 3.2 —
Cd (lg=L)
GM±SD 0:24± 1:7 0:32± 1:7 0.008
95% CI 42.4, 86.1 51.0, 83.2 —
As (lg=L)
GM±SD 0:61± 1:7 0:64± 1:7 0.442
95% CI 0.5, 2.1 0.5, 2.2 —
Fe (mg/L)
GM±SD 524:4± 1:2 378:4± 1:3 <0:001
95% CI 372.2 687.9 —
Ca (mg/L)
GM±SD 60:3± 1:2 65:9± 1:2 <0:001
95% CI 42.4 86.1 —
Mg (mg/L)
GM±SD 34:8± 1:1 33:8± 1:1 0.03
95% CI 28.8 44.5 —
Zn (mg/L)
GM±SD 1:9± 1:4 4:9± 1:3 <0:001
95% CI 1.3, 3.2 3.1, 7.4 —
Se (lg=L)
GM±SD 162:0± 1:2 157:1± 1:2 0.15
95% CI 117.9, 226.5 109.4, 223.5 —

Note: —, not applicable; As, arsenic; Ca, calcium; Cd, cadmium; CI, confidence inter-
val; CONAMAD, COhorte de NAcimiento de MAdre de Dios; Fe, iron; GM, geometric
mean; Hg, mercury; LOD, limit of detection; Mg, magnesium; Pb, lead; SD, standard
deviation; Se, selenium; Zn, zinc.
aGM and 95% CI values of toxic metals and minerals in blood. Values <LOD were
imputed as half of the LOD.
bFisher’s T-test between maternal blood and cord blood for each toxic metal and
mineral.
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guidelines of increasing prenatal health visits from 4 to 8 was
associated with a 205:2-g (95% CI: 83.12, 341.6) increase in birth
weight.58

Although Hg loaded on the latent variables ME and FE, Hg in
maternal or cord blood was not directly associated with gesta-
tional age or birth weight. Nor did we find a direct relationship
between ME and gestational age or birth weight. Maternal hair
Hg at birth, hemoglobin levels at enrollment, hemoglobin levels
at birth, and anemia status during pregnancy were also not associ-
ated with birth outcomes (Tables S9 and S12). Last, we did find a
covariance between birth weight and gestational age (b=146.0;

95% CI: 41.0, 280.1), with birth weight increasing 146:0 g for
each additional gestational week, providing further support to an-
alyze these outcomes jointly (Table 4).

Discussion
In this study, we used SEMs to integrate the physiological hierar-
chy present during gestation and evaluate the joint effect of toxic
metals and minerals on neonatal health. We find that maternal Pb
exposure below the former CDC threshold of 5 lg=dL is associ-
ated with shorter gestational age and lower birth weight. This

Figure 3. Heat map of minerals and toxic metal correlations in maternal (VB) and cord (CB) blood for the CONAMAD birth cohort conducted in Madre de Dios,
Peru, from 2017 to 2018. The Pearson correlation value is shown for maternal and fetal minerals/toxic metals, with significant positive and negative correlations rep-
resented by red and blue shading, respectively (p<0:05). Nonsignificant correlations are white. p-Values are provided in Table S6. Note: As, arsenic; Ca, calcium;
Cd, cadmium; CONAMAD, COhorte de NAcimiento deMAdre de Dios; Fe, iron; Hg, mercury;Mg,magnesium; Pb, lead; Se, selenium; Zn, zinc.

Table 4. Final structural equation model predicting gestational age and birth weight for the CONAMAD birth cohort conducted in Madre de Dios, Peru, from
2017 to 2018.

b (95% CI)a p-Value Std. lv Std. all

Base model with maternal Pb
Fetal MEb

ME 0.24 (0.05, 0.45) 0.03 0.22 0.22
Gestational age (wk)b

FE 2.28 (0.02, 4.63) 0.05 0.18 0.15
Prenatal visits (n) 0.13 (0.05, 0.23) 0.004 0.13 0.23
Hypertension (Ref: no) −0:60 (−1:25, 0.04) 0.06 −0:60 −0:12
Log10 maternal Pb (lg=dL) −0:74 (−1:46, −0:16) 0.03 −0:74 −0:14

Birth weight (g)b

Prenatal visits (n) 51.3 (20.78, 85.40) 0.001 51.3 0.24
Mother’s age (y) 18.43 (5.99, 31.67) 0.002 18.4 0.17
Sex (Ref: male) −127:43 (−242:48, −12:84) 0.03 −127:4 −0:14

Raw covariance structure
Gestational age∼ birth weightc 146.04 (41.01, 280.10) 0.02 146.04 0.30

Note: The model adjusts for hypertension, age, sex, and maternal blood Pb with latent variables for the maternal ME and the FE (n=198). Latent variables ME and FE are unitless.
Gestational age and birth weight are evaluated simultaneously with themodel structure shown in Figure 4. The∼ symbol represents the covariance between gestational age and birth weight.
CI, confidence interval; CONAMAD, COhorte de NAcimiento de MAdre de Dios; FE, fetal environment; g, grams; ME, metals environment; n, number of prenatal care visits; Pb, lead;
Ref, reference; Std. all, standardized all (completely standardized solution); Std. lv, standardized latent variable (b coefficient only standardizing the latent variables); wk, week; y, yes.
aRaw coefficients.
bHealth outcomes.
cEvaluated covariates.
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finding was dependent on measures of the maternal ME, the FE,
and other known determinants of neonatal health outcomes that
were evaluated within a realistic physiological hierarchy. This
finding supports the idea that even low levels of Pb exposure can
have important consequences for fetal health. Unexpectedly,
maternal Hg levels were not directly associated with either birth
outcome, although Hg levels did load into the maternal ME and
FE. The specification of the latent variables maternal ME and FE is
unique in toxicological and epidemiological approaches and offers
an important tool for evaluating joint effects of nutritional and toxic
metal exposure levels. Our data suggest that minerals are an impor-
tant determinant of the maternal ME and the FE, with toxic metals
having a lesser contribution, as shown by loading factors. Using
this physiologically based approach, we found that maternal ME is
associated with the FE, which, in turn, may mediate the effects of
stressors such as Pb andmaternal hypertension.

An important finding from this study is the beneficial effect of
prenatal care on neonatal health. We found that an increase in pre-
natal care visits from 6 to 12 is associated with an increase gesta-
tion by 5.5 d and increase birth weight by 320 grams. Although
Peru recommends 6–8 prenatal care visits, the number of visits in
the CONAMAD cohort ranged from 2 to 12.59 Guidelines for pre-
natal care vary across countries. The United States recommends 12
prenatal care visits,60 whereas Japan61 and theWHO58 recommend
14 and 8 prenatal care visits, respectively, for low-risk pregnancies.
Although age, sex, and hypertension are known covariates for neo-
natal health, the number of prenatal care visits is often underappre-
ciated in epidemiological studies,4–8,15,19,21,36–43 (Table S1),
regardless of the well-found benefits of prenatal care, which
include prescription of nutritional supplements, maternal and fetal

assessment, and increased knowledge on strategies to alleviate
physiological symptoms.58 In Peru, prenatal care visits are free,
covered by the national health care system, reducing the possibility
that the number of prenatal care visits is a proxy for wealth.
However, the CONAMAD study demonstrated that there remains
considerable variability in access and utilization of prenatal care,
which is a potential area of focus asMadre deDios and Peru overall
seek to improve neonatal health.

This study also revealed numerous metal and mineral correla-
tions within and across maternal and cord blood, demonstrating
their interconnected nature. This is due to differences in their abil-
ity to access metal transporters, dependent on molecular structure,
compatibility, and competing metals. Mechanistic details on
transport, although not explained in detail here, can be found in the
literature.62–65 In birth cohort studies, this complexity poses a
methodological limitation when toxic metals or minerals are eval-
uated individually because it omits important changes occurring in
other analytes that may be associated with health outcomes. A
prime example of this interaction is the role of Fe levels on Pb ex-
posure given that individuals with low Fe are known to absorb
greater amounts of Pb than Fe-replete individuals.57 Minerals are
also known to interact with each other.66,67 Previous epidemiologi-
cal studies found negative correlations between serum ferratin and
Ca68 andCa supplementationwas found to decrease heme and non-
heme Fe absorption in humans67 and rats.69 Although Ca is
expected to not limit Fe absorption in populations that consume a
Western diet, less is known for those who eat a non-Western diet
and for pregnant women.70 Maternal Ca levels in the CONAMAD
cohort were lower than in HICs, where 86:4–92 mg=L Ca were
measured at birth, compared with 66:6 mg=L.71–73 We found
maternal Ca loaded negatively onto ME and may reflect the rela-
tionship between Fe and Ca. The negative effect of Ca onME, may
provide evidence that Ca is limiting Fe absorption and that Ca sup-
plementation should not be taken with main meals so as to limit
any suppression of Fe absorption.74 Given this complexity, the sin-
gle toxic metal–single health outcome paradigmmay not be appro-
priate. To better understand maternal and neonatal health
outcomes, the effects of minerals and toxic metals and their poten-
tial interactions need to be further evaluated.

This is one of the first birth cohorts in Peru and the Amazon to
focus on minerals, toxic metals, prenatal care, and neonatal health.
It is also unique in that it was conducted in a region where artisanal
goldmining is prevalent, andwomen live in relatively rural, remote
areas. Compared with birth cohorts in HICs, CONAMAD had
lower levels of Zn75–77 but its levels were similar to those of other
middle-income countries78 and were not associated with adverse
health outcomes.79 We also found lower levels of Se, Cd, and Pb,
but much higher levels of Hg, in our population compared with the
Boston Birth Cohort.42 Cd levels in CONAMAD are lower than
other studies that found adverse neonatal health effects.80–82

Although we did not find any correlations between maternal Cd
and maternal Zn or Se less than p<0:05, previous studies in HICs
found an inverse correlation between Se and Cd.83 Interestingly,
Se and Cd were positively correlated in birth cohorts in low-
income communities in the United States,84 in smoking popula-
tions in Eastern Europe,85 and in healthy Japanesewomen,82 exem-
plifying the importance of studying populations with different diets
and confounding factors.

This is also one of the first birth cohorts studying in uterometal
concentrations using SEMs46,86 to model their transfer from
mother to child and jointly determine their associations with gesta-
tional age and birth weight while accounting for antenatal care and
other confounding factors. By creating latent variables for ME and
FE, we demonstrated the feasibility and utility of SEMs to evaluate
metal mixtures and their effect on neonatal health. Compared with

Figure 4. Final model diagram of toxic metals, minerals, and covariates on
birth outcomes of concern for the CONAMAD birth cohort conducted in
Madre de Dios, Peru, from 2017 to 2018. Final model diagram includes
hypertension (HPT), age, sex, prenatal visits, and maternal blood Pb levels
(lg=dL), with the maternal metals environment and fetal metals environment
as latent variables (ME and FE, respectively). Values shown are unstandar-
dized b values with transparency dependent on p-value as provided in
Table 4. Boxes are colored by maternal blood (black), cord blood (light gray),
traditional covariates (dark gray), ME (black), FE (light gray), and neonatal
health outcomes (white). Note: As, arsenic; Ca, calcium; CONAMAD,
COhorte de NAcimiento de MAdre de Dios; Fe, iron; Hg, mercury; Mg, mag-
nesium; Pb, lead; Se, selenium; Zn, zinc.
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linear regression, SEMs allow for a more complete understanding
of the structural associations present in maternal–fetal health by
assessing direct and indirect effects, limiting overcontrolling, and
allow outcomes to bemodeled jointly to evaluate the entire physio-
logical system.46 These characteristics make SEMs a useful analyt-
ical tool in evaluating the causal links that determine health
outcomes. There has been recent support for the development of
new statistical methods for analyzing complex mixtures that move
beyond traditional regression.87 SEMs provide a valuable compli-
ment to better understanding mixtures with their ability to create
latent variables, evaluate joint outcomes, and test hierarchical
models. In contrast to dose–response models, where a single toxin
or exposure is evaluated against a single health outcome, the SEM
allows us to integrate multiple toxins, minerals, or other nutrients
within a hierarchical physiological framework. Some studies have
discussed the trade-offs between SEMs and traditional dose–
responsemodels in toxicological risk assessments.44,88,89

Although Hg loaded onto ME and FE, we did not find a direct
association between maternal or cord blood Hg levels with eval-
uated birth outcomes. We also evaluated maternal total hair Hg at
birth, reflecting the last 2 months of exposure, which was also not
associated with health outcomes (Table S9). The lack of a direct
Hg exposure effect may be due to the exposure assessment (cord
and maternal blood) being related to exposure time periods around
birth rather than during conception or other earlier periods of fetal
growth. It is possible that a segmented analysis of maternal hair,
which approximates methylmercury (MeHg) exposure during dif-
ferent periods of the pregnancy, would have been a more appropri-
ate biomarker of exposure. Other possible reasons for the lack of
effect are the beneficial effects of polyunsaturated fatty acids from

fish consumption90 and the high prevalence of fruits with elevated
levels of antioxidants in the diet.91,92 Hg exposures in the region
are also predominantlyMeHg, targeting the central nervous system
andmay not be captured by gestational age or birth weight.

This study has several important limitations. First, as noted
above, the blood metal concentrations reflect only those at the time
of birth, and we do not account for maternal or in utero exposures
to minerals or toxic metals during the first and second trimester.
Although we did obtain data on nutritional supplements and hemo-
globin levels at two time periods during pregnancy, both were
unrelated to birth outcomes (Tables S10–S12). This is important
because the critical window of exposure may occur early in preg-
nancy, depending on the mineral/metal of concern. Maternal blood
Pb levels follow a U-shaped curve as they decline early in preg-
nancy from plasma volume expansion and increase until delivery
owing to increased absorption and mobilization of Pb stored in
bone, coinciding with increased Ca demand for the fetus in the
third trimester.20,93,94 In agreement with our findings, Rabito et al.
found third trimester blood Pb levels associated with gestational
age and not weight. However, they did find second and third tri-
mester blood Pb levels to be associated with preterm birth.20 There
is also evidence that the first trimester maternal Pb levels are more
strongly associated with adverse cognitive outcomes in children
than the third trimester; however, both were associated with child
cognition.95 We also were not able to account for any additional
adverse exposures, such as air pollution, inorganic chemicals, pes-
ticides, or household chemicals. There was also a potential bias in
requiring two children from the same biological father given that,
anecdotally, local health professionals identified such families as
being uncommon. This condition may have resulted in finding

Figure 5. Effect of maternal Pb levels and hypertension on gestation for the CONAMAD birth cohort conducted in Madre de Dios, Peru, from 2017 to 2018.
Days of pregnancy lost from log10 Pb maternal blood concentration (lg=dL) for mothers with an average FE (50th percentile, center, dotted lines) with the
25th and 75th quartiles for FE (shaded region and dashed lines). Horizontal, black dashed line represents no days of pregnancy lost. Hypertensive and nonhy-
pertensive mothers are shown as red circles and blue triangles, respectively. Values used are from Table 4. The circle and square demonstrate where days of
pregnancy lost become negative for the 25th and 75th percentiles of the FE, respectively, demonstrating a 34% increase in Pb exposure before the 75th percen-
tile suffers days of lost pregnancy. Vertical red line represents the former 5-lg=dL reference level set by the U.S. Centers for Disease Control and Prevention.
Note: FE, fetal environment; Pb, lead.
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less exposure risk to Hg than we had expected, potentially from
enrolling wealthier households that may have an additional source
of income. Compared with other birth cohorts, we have a smaller
sample size that may limit our analyses.4,96 Owing to limitations in
the field, we relied on the Capurro somatic method to determine
gestational age, which has been shown to overestimate gestational
age for newborns <39 wk of age in Brazil; however, it can have
high specificity (96%).97–99

The complexity of mineral and toxic metal transfer to the fe-
tus during pregnancy makes evaluating both the maternal ME
and the FE difficult, especially because of the inability to monitor
nutrient status of the fetus in utero. The placenta is a vital organ
that regulates nutrient and oxygen transfer to the fetus. Its impair-
ment by toxic metals is yet another route through which toxic
metals induce harmful outcomes.100–102 Future research that
incorporates the placenta and its ability to regulate minerals and
toxic metal transfer may provide valuable insight on neonatal
health. In addition, data that incorporates dietary, supplemental,
and maternal toxic metal exposures throughout pregnancy, as
well as ultrasound measurements and placenta characteristics,
may provide important insight into the dynamic changes that
occur during pregnancy.

SEMs also provide the framework to evaluate different groups
to determine whether they fit the same data structure. Although
this study did not have a sufficient sample size to conduct such
analyses, evaluating how anemia status (yes/no) at term or toxic
metal exposure status (high/low) may provide valuable insight on
how perturbations of a single metal effect the rest of the covari-
ance structure.

Conclusions
When adjusting for the natural physiological hierarchy of mineral
and toxic metal levels in mothers and newborns, our study sup-
ports that Pb exposures at levels below internationally recognized
thresholds can impair newborn health. Although the study was
designed to detect an effect of Hg on child developmental out-
comes, Hg was not directly associated with birth weight or gesta-
tional age. This could have been because the study was powered
to detect cognitive delays following in utero Hg exposure and did
not incorporate adjustments for mixed exposures (and minerals)
or birth outcomes specifically. We also find the number of prena-
tal care visits is a frequently overlooked aspect in environmental
health studies that can be used to improve neonatal health. In
addition, SEMs provide a robust statistical approach to evaluate
risk factors for neonatal health that allows correlated end points
to be analyzed jointly. Both minerals and toxic metals, alongside
with antenatal care, and maternal characteristics are important
determinants for neonatal health outcomes and need to be
assessed jointly.
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